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ABSTRACT: Land–atmosphere feedbacks are a critical component of the hydrologic cycle. Vertical profiles of boundary

layer temperature and moisture, together with information about the land surface, are used to compute land–atmosphere

coupling metrics. Ground-based remote sensing platforms, such as the Atmospheric Emitted Radiance Interferometer

(AERI), can provide high-temporal-resolution vertical profiles of temperature and moisture. When collocated with soil

moisture, surface flux, and surfacemeteorological observations such as at theAtmospheric RadiationMeasurement (ARM)

SouthernGreat Plains site, it is possible to observe both the terrestrial and atmospheric legs of land–atmosphere feedbacks.

In this study, we compare a commonly used couplingmetric computed from radiosonde-based data with that obtained from

the AERI to characterize the accuracy and uncertainty in the metric derived from the two distinct platforms. This approach

demonstrates the AERI’s utility where radiosonde observations are absent in time and/or space. Radiosonde- and AERI-based

observations of the convective triggering potential and low-level humidity index (collectively referred to as CTP-HIlow) were

computed during the 1200 UTC observation time and displayed good agreement during both the 2017 and 2019 warm seasons.

Radiosonde- and AERI-derived metrics diagnosed the same atmospheric preconditioning based upon the CTP-HIlow
framework a majority of the time. When retrieval uncertainty was considered, even greater agreement was found between ra-

diosonde- andAERI-derived classification. TheAERI’s ability to represent this couplingmetricwell enabled novel exploration of

temporal variability within the overnight period in CTP and HIlow. Observations of CTP-HIlow computed within a few hours of

1200UTCwere essentially equivalent; however, with greater differences in time there arose greater differences in CTP andHIlow.
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1. Introduction

Land–atmosphere interactions play a critical role in both

the atmospheric water and energy cycle. The sensitivity of

the atmosphere to changes in land surface conditions is

particularly pronounced in semiarid regions throughout the

world (Guo et al. 2006; Koster et al. 2006; Dirmeyer 2006).

Changes in soil moisture and vegetation health alter the

partitioning of surface water and energy fluxes, influencing

diurnal evolution of the planetary boundary layer (PBL),

and even subsequent cloud and precipitation development.

Along the same lines, persistence in soil moisture states may

drive longer-term precipitation anomalies and geopotential

height anomalies (Koster et al. 2016). As such, extreme events

such as drought, heatwaves (Miralles et al. 2014; Schumacher

et al. 2019), heavy rainfall (Wei et al. 2015; Song et al. 2016),

or even the overland reintensification of tropical cyclones

(Emanuel et al. 2008; Arndt et al. 2009; Andersen and Shepherd

2013; Andersen et al. 2013; Wakefield et al. 2021) can be im-

pacted by land–atmosphere feedbacks. Greater understanding

of how the atmosphere and land surface covary, also referred to

as land–atmosphere coupling (LA coupling), is essential to

improving predictability of such extremes (Seneviratne et al.

2006; Koster et al. 2011; Dirmeyer and Halder 2016).

Numerical modeling approaches to study LA coupling range

in scale from single column models (Ek and Mahrt 1994;

Ek and Holtslag 2004) to atmospheric general circulation

models (Dirmeyer 2001; Koster et al. 2004; Guo et al. 2006;

Koster et al. 2006, 2014) to conceptualize the link between

surface and atmospheric processes across scales. Observation-

based studies (e.g., Basara and Crawford 2002; McPherson

et al. 2004; Phillips and Klein 2014; Tang et al. 2018) supple-

ment these approaches by quantifying the true behavior of

these processes in nature and can inform more realistic rep-

resentation of coupling in models. Coupling metrics arose from

the need to succinctly quantify land–atmosphere feedbacks

in both modeling and observational studies (Santanello et al.

2018). Numerousmetrics havebeendevelopedby theLA-coupling

community and exist on a spectrum of complexity. Process-level

metrics describemultiple components of the local land–atmosphere

coupling process chain (Santanello et al. 2011a,b), to better capture

the multiple steps through which the land surface influences the

evolution of the PBL and free atmosphere.

One frequently used process-level coupling metric is the

convective triggering potential–low-level humidity index

(CTP-HIlow) framework (Findell and Eltahir 2003a,b). This

metric has been applied using its original formulation across

multiple regions of the world (Jach et al. 2020). It has also been
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modified based on climatology of the metric over various re-

gions (Ferguson and Wood 2011; Wakefield et al. 2019) or to

create a new diagnostic for land–atmosphere coupling contri-

butions to hydroclimate extremes such as drought (Roundy

et al. 2013; Roundy and Santanello 2017). The CTP-HIlow
framework uses early morning vertical profiles to diagnose

whether the atmosphere is preconditioned toward clouds

and/or convective precipitation triggered over wet or dry soils

(Findell and Eltahir 2003a,b). The use of the early morning

radiosonde profiles was intended to represent the lower tro-

posphere before substantial mixing of the PBL occurs. In the

contiguous United States (CONUS), 1200 UTC typically cor-

responds to a preconvective boundary layer, between 0400

and 0800 local time (LT). However, in different regions of

the world, neither of the synoptic radiosonde launches at

0000 UTC and 1200 UTCmay coincide with the early morning

PBL (i.e., perhaps they are in the middle of the night or they

represent a well-mixed PBL in the day). One solution is to use

vertical profiles corresponding to the same local time at every

location. However, this approach is limited by the availability

of vertical profiles during periods beyond the typical 1200 and

0000 UTC radiosonde observations.

To address this limitation, vertical profiles obtained from

remote sensing platforms such as the Atmospheric Infrared

Sounder (AIRS) on board NASA’s Aqua satellite have been

used to compute CTP and HI at the same local time (0130 LT)

for locations around the world (Ferguson and Wood 2011;

Roundy et al. 2013; Roundy and Santanello 2017). Because

0130 LT is consistent with a preconvective boundary layer, it

was suggested that little difference should exist between ver-

tical profiles obtained at 0130 LT and those obtained at

1200 UTC [which corresponds to a local time of 0700 central

daylight time (CDT)] across the CONUS. Indeed, there was

good agreement between computations of CTP and HI ob-

tained from AIRS when compared with reanalysis datasets.

Even so, a lack of ground-based observations with sufficient

temporal resolution made it difficult to directly observe

whether temporal variability does truly exist in CTP and HI

during the period between the AIRS overpass time and the

radiosonde observation time. Furthermore, thermodynamic

profiles retrieved from infrared sounders like AIRS have rel-

atively little information content in the PBL, resulting in coarse

(e.g., order 1–2 km) vertical resolution (Irion et al. 2018). As

such, we will explore the question of temporal variability of

CTP and HI further in our study.

The lack of such studies until now is primarily driven by

a lack of atmospheric profile observations at higher spatial

and/or temporal frequencies than those offered by the tra-

ditional twice daily radiosonde observations. Ground-based

thermodynamic profilers, such as the Atmospheric Emitted

Radiance Interferometer (AERI), provide an alternative method

for obtaining vertical profiles of temperature and moisture at

higher temporal frequencies and where radiosonde observa-

tions are absent.

The AERI is a ground-based passive spectrometer that

measures downwelling infrared radiation. Thermodynamic

profiles are retrieved from the observed radiance data (the

method is described in section 2b), but the vertical resolution is

lower than that of traditional radiosonde profiles. This de-

crease in vertical resolution introduces some uncertainty when

using the AERI to compute convective indices, though these

uncertainties are generally greatest for integrated indices such

as convective available potential energy (CAPE) (Blumberg

et al. 2017). Despite this limitation, the temporal resolution of

the AERI makes it a useful tool for monitoring destabilization

trends within the PBL (Feltz et al. 2003; Wagner et al. 2008;

Blumberg et al. 2015, 2017) at temporal resolutions unmatched

by radiosonde observations.

The temporal resolution of the AERI provides a unique

opportunity to evaluate land–atmosphere coupling, in partic-

ular, and allows us to address several questions left unanswered

by previous studies. The main questions we address in this

study are

1) What are the uncertainties associated with computing CTP

and HI from AERI profiles relative to collocated radio-

sonde profiles?

2) Do CTP and HI exhibit substantial temporal variability

overnight, or are these values consistent as long as they are

obtained for a preconvective PBL?

We focus our analyses at theAtmosphericRadiationMeasurement

(ARM) program’s SouthernGreat Plains (SGP) site (Sisterson

et al. 2016) in Lamont, Oklahoma, during the summers (June–

August) of 2017 and 2019.

2. Data

a. Atmospheric Emitted Radiance Interferometer

The AERI measures downwelling radiance emitted from

the atmosphere at wavelengths between 3.3 and 19.2 mm

approximately twice per minute at 1 cm21 spectral resolu-

tion (Knuteson et al. 2004a). The instrument maintains

calibration by regularly observing two blackbodies, one at

608C and one at ambient temperature, which results in the

AERI maintaining its radiometric accuracy to better than

1% of the ambient radiance in both clear and cloudy con-

ditions (Knuteson et al. 2004b). In the presence of precipita-

tion, an automated hatch is closed to protect the foreoptics of

the instrument.

b. AERIoe algorithm for thermodynamic profile retrieval

Retrieval algorithms are necessary to obtain thermody-

namic profiles from the observed infrared radiance spectra.

These algorithms make use of CO2 and H2O absorption bands

that lie within the spectral range of the AERI to obtain tem-

perature and water vapor profiles, respectively. The original

retrieval algorithm AERIprof (Feltz et al. 1998; Smith et al.

1999) had several limitations including the inability to retrieve

thermodynamic profiles under low- and midlevel clouds, which

motivated the development of the AERIoe algorithm to ad-

dresses these shortcomings (Turner and Löhnert 2014; Turner
and Blumberg 2019). The AERIoe algorithm retrieves ther-

modynamic profiles and cloud properties (e.g., liquid water

path) from the AERI radiance observations using an optimal

estimation (OE) framework (Rodgers 2000). This framework
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allows for the uncertainties associated with each retrieved

variable to be quantified, and these uncertainties can be

propagated to provide uncertainties in the derived coupling

metrics.

c. Site selection

While multiple AERI instruments are located in the

ARM SGP domain, we use only the central facility (deno-

ted sgpC1) AERI for this particular study as radiosondes

are launched within 150 m of this AERI. This allows for

coupling metrics to be derived from both AERI and ra-

diosonde profiles and for the relative accuracy in the AERI-

derived metrics to be quantified. This study used sgpC1 and

1200 UTC radiosonde data from three periods: 16 May to

12 June 2017, 1–31 August 2017, and 17 April to 31 August

2019. These three periods coincide with three different field

campaigns at the ARM SGP site. The 16 May to 12 June 2017

period was in support of the Vaisala DIAL IOP (Newsom et al.

2020), the August 2017 period was in support of the Land–

Atmosphere Feedback Experiment (LAFE; Wulfmeyer et al.

2018), and the 2019 period was in support of the Micropulse

DIAL IOP.

3. CTP-HI analysis

a. Framework description

CTP-HIlow (hereinafter CTP-HI) was developed by Findell

and Eltahir (2003a,b) to diagnose the preconditioning of the

atmosphere toward locally triggered convection based upon

whether soils are wet or dry. It was developed from the output

of a one-dimensional model over Illinois and further tested

using observational data from upper-air stations across the

United States. The framework uses the 1200 UTC sounding

data, which are within a few hours of sunrise in most locations

within the continental United States, in order to determine the

moisture content and instability within the portion of the at-

mosphere most likely to be incorporated into the growing

mixed layer.

HI is computed from the sum of the dewpoint depressions at

50 and 150 hPa above ground level (AGL) to provide an esti-

mate of the preexisting moisture in the atmosphere (8C):

HI5 (T2Td)
150hPaAGL

1 (T2Td)
50hPaAGL

, (1)

where T is temperature and Td is dewpoint temperature. CTP

is computed by locating the moist adiabat that intersects the

temperature profile at 100 hPa above ground level and inte-

grating the area between this moist adiabat and the tempera-

ture profile, upward within a 200-hPa layer from 100 hPa above

ground level to 300 hPa above ground level. Units of CTP are

joules per kilogram. This process assumes a saturated parcel at

100 hPa AGL. Pseudoadiabats (moist adiabats) were com-

puted using the MetPy (May et al. 2020) software package that

integrates the equation for moist adiabatic lapse rate obtained

from Eq. (5) in Bakhshaii and Stull (2013). The computation

of CTP is similar to that of CAPE. CTP estimates the insta-

bility within the layer of the atmosphere between 100 and

300 hPa AGL (approximately 1–3 km AGL). The combined

CTP andHI pair can be used to diagnose whether convection is

favored over wet or dry soils based upon thresholds set forth in

Findell and Eltahir (2003a,b).

Based on this information, the atmosphere is classified into

several different categories:

1) atmospherically controlled—This can either mean that if

convection occurs, it is not locally triggered, or it can

mean that the atmosphere is too stable or too dry for

convective triggering. Therefore, this category has been

divided into three subcategories based on Findell and

Eltahir (2003a,b):

(i) atmospherically controlled stable (ACst), where the

atmosphere is too stable for precipitation (when

CTP , 0 J kg21),

(ii) atmospherically controlled wet (ACw), where the

atmosphere is already moist such that rainfall or

shallow clouds can occur over any soil condition

depending on CTP value (HI , 58C), and
(iii) atmospherically controlled dry (ACd), where the at-

mosphere is too arid for convective precipitation to

occur (HI . 158C).
2) wet advantage (WA)—Locally triggered convection is most

likely over wet soils.

3) dry advantage (DA)—Locally triggered convection is most

likely over dry soils.

4) transition (T)—Convection may occur over any soil type,

but no convection is the most likely outcome. If convection

is triggered, it is most likely over dry soils.

The numerical thresholds for each category are depicted in

Fig. 15 of Findell and Eltahir (2003a) and are reproduced here

in Fig. 1.

b. Uncertainties associated with AERI-derived CTP and HI

The framework uses morning vertical profiles from radio-

sondes, and in the western hemisphere, this corresponds to the

1200 UTC observation. While these are considered 1200 UTC

observations, they are typically recorded in the hour between

FIG. 1. Figure 15 fromFindell and Eltahir (2003b) showing CTP-HI

combinations for each category of atmospheric preconditioning.
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1100 and 1200 UTC. Thus, the typical 1200 UTC radiosonde

observation is often still within the boundary layer during the

1100 to 1200 UTC time window. As such, we selected AERI

retrievals that occurred within the 1100–1200 UTC window

that had both (i) small root-mean-square (RMS) error (i.e., the

retrieved thermodynamic profile agrees well, in a radiance

sense, with the radiance observations) and (ii) the retrieved

liquid water path (LWP) was less than 6 gm22 to ensure little

to no overhead clouds. Of the retrievals that met the afore-

mentioned criteria, the retrieval closest in time to radiosonde

launch time was selected for comparison.

CTP andHIwere computed from the selectedAERI profile.

Each AERI-retrieved profile has its associated uncertainties

that can be used to approximate uncertainties in the CTP and

HI values obtained from the profile. Using the posterior error

covariance matrix produced by the AERIoe retrieval algo-

rithm, uncertainties in the profile were then estimated by using

Monte Carlo resampling of the posterior error covariance

matrix 500 times (similar to the approach used in Blumberg

et al. 2017). This produced a distribution of 500 possible water

vapor and temperature profiles. CTP and HI were then com-

puted from each profile to obtain a distribution of possible CTP

and HI observations at a given time.

We first compared CTP and HI observations obtained from

the full vertical resolution of the radiosonde profiles with those

obtained from the AERI thermodynamic profiles. Figures 2a

and 3a show that AERI-derived CTP and HI agreed well with

HI and CTP values obtained from the radiosonde observa-

tions, respectively. The R2 values computed using the Pearson

correlation coefficient indicate that HI displayed slightly better

agreement between the two platforms, with a slightly greater

R2 value than that of CTP (Table 1). When broken down by

year, both years performed similarly.

One primary source of error in the AERI-retrieved versus

radiosonde profiles arises due to differences in vertical reso-

lution. Given the reduced vertical resolution in the AERI (see

FIG. 2. (a) AERI HI vs radiosonde HI, (b) AERI HI vs AERI–radiosonde HI difference,

(c)AERIHI vs smoothed radiosondeHI, and (d)AERIHI vsAERI–smoothed radiosondeHI

difference. Black points represent 2017 data, and red points represent 2019 data.
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Fig. 7 in Turner and Löhnert 2014) as compared with radio-

sonde profiles, differences in CTP and HI observed from each

platformmay be attributed to differences in vertical resolution.

To test this theory, radiosonde profiles were smoothed to the

same vertical resolution as the corresponding AERI profiles

for the given time. This was completed using the averaging

kernel produced by the AERIoe retrieval algorithm (Turner

and Löhnert 2014). Reducing the vertical resolution of the

radiosonde profiles produced CTP and HI values that were

more similar to those obtained from the AERI (Figs. 2c and

3c). The improved agreement suggests that the unsmoothed

radiosonde profiles and AERI profiles differ, in part, due to

differences in vertical resolution. Overall, CTP showed a lower

degree of covariability than HI in datasets for both years and

for the smoothed and unsmoothed comparison.

c. Accuracy of preconditioning classifications

A primary objective of this study is to determine whether

the AERI can serve as a useful tool for implementing the

CTP-HI framework to diagnose atmospheric preconditioning

FIG. 3. As in Fig. 2, but for CTP.

TABLE 1. The R2 values computed from Pearson correlation for AERI vs radiosonde CTP and HI observations, bias, and standard

deviation of the difference between AERI and radiosonde observations.

R2 2017 (N 5 43) R2 2019 (N 5 95) R2 both (N 5 138) Bias (both) Std dev (both)

AERI vs radiosonde HI 0.64 0.66 0.65 20.458C 4.328C
AERI vs smoothed radiosonde HI 0.75 0.86 0.83 20.298C 3.668C
AERI vs radiosonde CTP 0.65 0.63 0.62 18.06 J kg21 98.73 J kg21

AERI vs smoothed radiosonde CTP 0.70 0.76 0.72 6.71 J kg21 71.67 J kg21
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accurately. Therefore, we performed additional compari-

sons to values obtained from the unsmoothed radiosonde

profiles. This allowed us to evaluate whether the AERI can

provide the same diagnosis of atmospheric preconditioning

via the CTP-HI framework as the radiosonde despite its

lower vertical resolution. Hereinafter any reference to ra-

diosonde profiles is referring to the unsmoothed radiosonde

profiles.

The combination of CTP and HI observations for a given

time were used to diagnose atmospheric preconditioning

based upon discrete thresholds for each preconditioning

category. Because of the discrete thresholds used in this

coupling framework, small differences in CTP and HI be-

tween the AERI and radiosonde could result in a different

classification of the atmospheric preconditioning. As such, we

performed an additional comparison of the atmospheric

preconditioning diagnosed by each instrument using the

CTP-HI framework following the thresholds set forth in

Findell and Eltahir (2003a,b). A 6 3 6 verification contin-

gency table was created using the classification categories

listed above, with Atmospherically Controlled (AC) condi-

tions further separated into stable (ACst), wet (ACw), and

dry (ACd) categories within the table (Fig. 4). AERI and

radiosonde observations that produced the same classifica-

tion reside along the diagonal, and off-diagonal elements

represent differences in classification.

To diagnose the AERI’s skill, we computed the Heidke skill

score (HSS) using the approach in Wilks (2011):

HSS5
�
I

i51

p(y
i
,o

i
)2�

I

i51

p(y
i
)p(o

i
)

12�
I

i51

p(y
i
)p(o

i
)

, (2)

where I represents the number of elements in the row or col-

umn and i is the ith element; p(yi, oi) represents the joint dis-

tribution of AERI and radiosonde classifications, or diagonal

elements of the table, and the individual AERI p(yi) and

radiosonde p(oi) marginal distributions of observations rep-

resent the off-diagonal elements. In terms of forecast verifi-

cation, an HSS of 1 represents a perfect forecast—that is, the

AERI classifications perfectly matched the radiosonde clas-

sifications, and a score of 0 indicates that the same agreement

between radiosonde andAERI classifications could be achieved

by chance.

In addition, we considered all possible classifications within

the retrieval’s window of uncertainty. The window of uncer-

tainty was defined as greater than or less than one-half

standard deviation of the observed value based upon the

distribution of potential profiles. CTP and HI were computed

from each of the profiles within this window of uncertainty to

diagnose atmospheric preconditioning. We also only consid-

ered the range of uncertainties when that range of CTP and

HI values produced only two possible classifications. This

allowed us to capture those cases when CTP and HI obser-

vations between the two platforms may have been nearly

identical, but on opposite sides of a classification threshold.

For example, if CTP observed by both platforms lies between

150 and 200 J kg21, but the observed HI for one platform is

9.58C while the other is 10.28C, then the former would be

considered ‘‘wet advantage’’ while the latter would be con-

sidered ‘‘transition.’’ Thus, for the uncertainty analysis, if the

AERI classification differed from that of the radiosonde

initially, but the ‘‘correct’’ (radiosonde) classification was

within the AERI’s window of uncertainty, and that window of

uncertainty only included two possible classifications, then

that day would be counted as a ‘‘hit.’’ A summary of these

methods can be found in Fig. 5.

FIG. 4. Contingency matrix comparing CTP-HI classifications obtained based on radiosonde

vs AERI CTP-HI observations and Heidke skill scores (a) without window of uncertainty and

(b) includingAERIwindowof uncertainty. The color bar corresponds to number of counts, and

this number is also annotated directly within the matrix.
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AERI and radiosonde observations produced the same

classification of atmospheric preconditioning approximately

71% of the time with an HSS of 0.62 (Fig. 4a). The majority of

days were atmospherically controlled. For wet advantage and

dry advantage days, the two platforms agreed just over half of

the time, while transition days displayed more off-diagonal

counts than counts along the diagonal. When we introduced a

limited range of uncertainty (Fig. 4b), this resulted in agree-

ment on 81% of days, while agreement on both wet and dry

advantage days improved from just over half of days to over

75% of days. Transition days also displayed a tremendous

improvement in agreement when considering uncertainty,

increasing from 29% to 57% of days, and the HSS improved

from 0.62 to 0.75. The movement of off-diagonal elements to

the diagonal suggests that the reason for differences in the

initial classification are likely driven by borderline CTP and

HI values that were near the thresholds for a given pair of

categories.

d. Temporal variability in CTP and HI

A second analysis examined the temporal variability in CTP

and HI using only AERI observations. The motivation behind

inspecting the temporal variability in these two quantities is

driven by the potential differences across time zones in accu-

mulated net radiation at upper-air stations during the morning

upper-air observation. For example, during the summer, an

upper-air station on the East Coast of the United States will

have had two additional hours of downwelling shortwave ra-

diation at 1200 UTC than an upper-air station at the same

latitude within the mountain time zone. Therefore, it is im-

portant to ensure that the 1200 UTC radiosonde observation

can still be employed in the computation of this coupling

metric across time zones.

The high temporal resolution of the AERI enables this type

of analysis. While the AERI is at a fixed location, evaluating

CTP and HI computed during time windows preceding and

following the 1200 UTC radiosonde observation can be used to

represent the accumulated net radiation in other time zones.

We used the 1100 to 1200 UTC time window as ‘‘truth’’ be-

cause it corresponds to the 1200UTC radiosonde observations.

Hereinafter, this period is denoted as T12. Because the ARM

central facility is located within the central time zone, accu-

mulated net radiation in the mountain time zone at 1200 UTC

would be 1 h behind the central time zone, or more similar to

what is observed in the central time zone during the 1000–

1100UTC timewindow (hereinafter T11). Similarly, the eastern

time zone would be 1 h ahead, or more similar to the accu-

mulated net radiation at the central facility during the 1200–

1300 UTC time window (T13).

Past applications of the framework (Ferguson and Wood

2011; Roundy et al. 2013; Roundy and Santanello 2017) have

used vertical profiles obtained at times other than 1200 UTC

such as those obtained from theAtmospheric Infrared Sounder

(AIRS), which are acquired at approximately 0130 LT for a

given location. As such, we also computed CTP and HI for the

time window from 0700 to 0800 UTC (T08), which corresponds

to the AIRS overpass time at 0130 CST (local time).

It is hypothesized that, in the absence of significant advective

processes or the passage of synoptic-scale features, these two

quantities should remain relatively constant in time. Further,

even in those locations where the sun rises earlier, the PBL

should not be fully developed to the levels where CTP and HI

are measured.

The difference between CTP and HI at T12 (time window

considered as truth) and the three other intervals were com-

puted by subtracting the values at other times from the CTP

and HI values at T12. All differences were statistically signifi-

cant at p , 0.05 except for the CTP differences for T11–T12

and T11–T10. The difference distributions (Fig. 6) provide

several key results:

1) HI at T11 and T13 displayed similar agreement with T12,

while the HI values at T08 exhibited a much greater range

of differences with T12 (Figs. 6a,c).

2) HI at T12 was slightly less than at T11 and slightly greater

than at T13, and as such, the atmosphere slightly moistened

over time (Figs. 6a,c). (Recall that higher values of HI

correspond to greater dewpoint depressions).

3) Similarly, T08 displayed the greatest differences from T12

and a negative median difference indicates that HI at T08

was greater than at T12 (Fig. 6c). This remains consistent

with T11 and T13 results that indicate that the atmosphere

moistens with time.

4) HI at T11 and T13 had the lowest interquartile range (IQR)

(Fig. 6c), with a majority of observations falling within 28C

of HI at T12, while the IQR for T08 was greater and a

majority of T08 HI observations were within 68C of

those at T12.

5) CTP observations were relatively consistent for all three

periods and displayed the same sign as biases to those

observed in HI, with CTP observations at T13 being less

than those at T12, while CTP observations at T11 and T08

were greater than those at T12 (Figs. 6b,d).

FIG. 5. Flowchart for computing contingency matrix with un-

certainty. Green arrows represent ‘‘yes,’’ and red dashed arrows

represent ‘‘no.’’
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6) The greatest differences in CTP were observed between

T08 and T12 (Fig. 6d).

7) Most CTP observations at T08, T11, and T13 were within

100 J kg21 of T12, with differences in T08 versus T12

having a greater IQR, or greater variability (Fig. 6d).

e. Composite vertical profiles

Composite mean profiles were computed to better under-

stand where differences in CTP and HI were arising; CTP at

each period of interest was subtracted from CTP at T12. From

this difference distribution, composite mean temperature

profiles on the three days with the greatest differences in CTP

above the 95th percentile (Figs. 7a–c) and below the 5th per-

centile (Figs. 7d–f) were computed. Evaluating both tails of the

distribution allowed us to evaluate whether there were truly

large differences between conditions in which T12 was over- or

underestimated or whether the differences were related to

small changes in the vertical profile at certain levels, such as the

height of an inversion rising or falling. When CTP at T12 is

greater than CTP at other times, these differences are pri-

marily associated with differences in lapse rates within the

layer. Temperature profiles displayed similar temperatures at

100 hPa AGL, resulting in CTP parcel profiles being obtained

for approximately the same moist adiabat. The profiles di-

verged above this level with steeper lapse rates observed for

T12 contributing to more positive CTP than the comparison

times. Conversely, whenCTP at T12 was less than CTP at other

times, steeper lapse rates were often observed for the

comparison times.

Composite mean profiles were also computed for HI dif-

ference distributions (Fig. 8). The greatest differences in HI

were primarily driven by differences between dewpoint pro-

files while temperature profiles were markedly similar in time.

An exception is those cases when HI at T12 was less than HI at

T08 (Fig. 8d) where both temperature and dewpoint profiles

differed among the two times. This confirms our hypothesis

that the greater length of time between observations at T08

and T12 would allow for greater changes in temperature

and moisture within the lower portions of the atmosphere.

Even within the tails of the difference distributions, the dif-

ferences in thermodynamic profiles are most pronounced at

both levels in which HI is measured for T12–T08. The greatest

contribution to differences inHI can be further narrowed down

to differences in the dewpoint depression observations at

150 hPa AGL. Most profiles show relatively better agreement

in dewpoint depression observations at 50 hPa AGL. The

reasons for this are twofold. First, given the AERI’s ability to

represent CTP and HI well, it is likely that temperature and

moisture profiles changed between the two times being com-

pared. Second, while theAERI provides a good representation

of reality, all observations include some degree of uncertainty.

In this case, vertical resolution decreases with height, and it

is likely that coarser vertical resolution is playing a role in

the greater differences in dewpoint depression observed at

150 hPa AGL.

f. Temporal variability in preconditioning classifications

Even if median temporal differences in HI are close to 28C
and CTP median differences are approximately 100 J kg21,

they still may lead to the same category for classification of

preconditioning based on the CTP-HI framework as long as

these differences do not straddle categorical thresholds.

FIG. 6. Histogram of temporal differences between (a) HI and (b) CTP, and boxplots displaying median and

interquartile range of temporal differences for (c)HI and (d) CTP computed for T122T08 (blue), T122T11 (red),

and T12 2 T13 (yellow).
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Figure 9 shows contingency matrices of preconditioning

classification categories at T12 versus T08 (Fig. 9a), T11

(Fig. 9b), and T13 (Fig. 9c), respectively, along with HSS. As

in Fig. 4, the categories shown are a slight extension of the

original framework as the atmospherically controlled category

was broken into subcategories to discern whether atmospher-

ically controlled scenarios were a result of enhanced stability

(ACst), lack of moisture (ACd), or excess of moisture (ACw).

Atmospherically controlled was the most common classifica-

tion for all times, with the ACd subcategory occurring most

frequently.

We looked for the greatest concentration of frequencies

on the diagonal of each confusion matrix (Fig. 9), as that

suggests both times agree on classification even when exact

values of CTP and HI differ. Because T11 and T13 CTP and

HI differed the least from T12, it is not surprising that these

two times also displayed the greatest agreement in classifi-

cations with little difference in HSS and both agreeing with

T12 during approximately 78% of days. Where CTP and

HI differed most for the T08 case, the greatest frequency of

off-diagonal observations also occurred in the classification

matrix (Fig. 9a). When T12 was classified as WA, T08 could

be classified as any of the three nonatmospherically con-

trolled classifications, though WA was still the most fre-

quent classification. Overall, the same classification as T12

was produced by T08, T11, and T13 for 64%, 78%, and 79%

of cases, respectively.

When classification differences occurred, these were often

for adjacent categories with a clustering of off diagonal counts

immediately adjacent to those along the diagonal. To further

explore this, we performed the same uncertainty analysis that

was used to compare the radiosonde and AERI observations,

except that T12 (AERI) observations were considered ‘‘ab-

solute truth’’ for this uncertainty analysis. Uncertainties were

then computed at T08, T11, and T13 individually using each

time’s distribution of potential profiles and applying the same

uncertainty thresholds used in the radiosonde-versus-AERI

analysis. Addition of uncertainty improved the percentage of

days with agreement in time for all three times considered and

also improvedHSS for all three times (Fig. 10). The decrease in

FIG. 7. Composite temperature profiles for days with the greatest temporal difference (CTP at T122CTP at T08,

T11, and T13) in CTP for differences (a)–(c) above the 95th percentile and for differences (d)–(f) below the 5th

percentile. Black horizontal lines represent the 100- and 300-hPa (AGL) levels.
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number of off-diagonal elements is especially apparent for T13

versus T12 (Fig. 10c).

When we looked instead at the frequency of each category

by time, during the 2017 to 2019 period (Fig. 9d), and not at

whether these were occurring on the same day, each time

displayed similar frequencies per classification. ACd was ob-

served less frequently at T13 than during the other periods,

while ACw was observed most frequently for T13, further

supporting the idea of atmospheric moistening with time. WA

was the most common categorization for the nonatmospheri-

cally controlled days for all periods, while T and DA were

similar in frequency for all time periods.

4. Discussion

In this study we demonstrated the utility of the AERI for

observation-based land–atmosphere coupling analysis using

the CTP-HI framework (Findell and Eltahir 2003a,b).

Our study was motivated by two primary questions:

1) What are the uncertainties associated with computing CTP

and HI from radiosonde profiles versus from ground-based

AERI-retrieved profiles?

2) Do CTP and HI exhibit substantial temporal variability

overnight, or are these values consistent as long as they are

obtained for a preconvective PBL?

We found that the AERI provides a realistic representation of

CTP and HI and agreed well with radiosonde observations of

the same metrics, even though small uncertainties were still

present. These uncertainties were most apparent for the com-

parison of CTP values computed from radiosonde versus

AERI thermodynamic profiles. These uncertainties are not

surprising given CTP is a vertically integrated metric and it

incorporates observations from higher levels in the atmo-

sphere. Integrated metrics such as CTP or, in the case of

Blumberg et al. (2017), CAPE have greater uncertainties than

simpler metrics like HI. CTP measurements are also obtained

at greater heights in the atmosphere (i.e., approximately 1–

3 km) where vertical resolution of the AERI is reduced in

FIG. 8. As in Fig. 7, but for HI difference distributions and with the inclusion of dewpoint profiles.

Horizontal black lines represent 50 and 150 hPa AGL, at which levels dewpoint depressions for HI compu-

tations are measured.
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comparison with HI measurements that are made lower in the

atmosphere (i.e., approximately 0.5 and 1.5 km) where vertical

resolution is greater.

The impact of vertical resolution on these uncertainties was

further realized when radiosonde profiles were smoothed to

the same resolution as AERI profiles. Comparison of profiles

with the same vertical resolution produced greater agreement

in observations of CTP and HI between the two observational

platforms. This further suggests that vertical resolution is a

significant driver of the difference between radiosonde- and

AERI-derived CTP and HI. Although uncertainties exist, they

do not hinder the AERI’s ability to provide a realistic esti-

mation of CTP and HI.

AERI and unsmoothed radiosonde diagnoses of atmo-

spheric preconditioning based on the CTP-HI framework were

identical for a majority of days, even if exact values of CTP

and HI did not match. Incorporating uncertainty estimates

further demonstrated the AERI’s utility in applying the

CTP and HI framework, producing a greater number of days

in which both AERI and radiosonde profiles diagnosed the

same atmospheric preconditioning. Such analyses further

confirm the hypothesis that a majority of the initial differ-

ences in preconditioning classification were driven by in-

stances when radiosonde CTP and HI values were at the

boundaries of a given category’s threshold. This was made

apparent by the increase in along diagonal elements within

the uncertainty contingency matrix (Fig. 5), and a corre-

sponding decrease in off-diagonal elements, especially within

adjacent categories.

The agreement betweenAERI and radiosonde observations

of CTP and HI demonstrated that the AERI can be useful for

obtaining vertical profiles in time and space where radiosonde

observations are lacking. The temporal frequency of AERI

observations also provides a unique opportunity to explore the

variability of this metric in time. Accumulated net radiation

varies in space such that soundings released at the same UTC

time do not coincide with the exact same PBL conditions

around the world. We explored variability surrounding the

1200 UTC observation as this corresponds to the morning

observation in much of the Western Hemisphere. It is

FIG. 9. Contingency matrix of classifications based on CTP and HI combinations for 1100–1200 UTC (10 h) vs (a) 0600–0700 UTC

(25 h), (b) 1000–1100 UTC (21 h), and (c) 1200–1300 UTC (11 h). Abbreviations for each classification are provided in section 3a.

(d) Percentage of days in each category for each time window.
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important to note that the implications of our results may be

interpreted for locations in a different hemisphere, where the

morning sounding may coincide with 0000 UTC. We are pri-

marily concerned with variability in CTP and HI in the hours

immediately preceding and following the hour of the morning

sounding but we included an additional time period (0700–

0800 UTC) in the analysis for comparison with past studies

using the CTP-HI framework.

Our results suggest that variability in CTP and HI in the

hours immediately surrounding the morning sounding is min-

imal. Composite mean profiles for the cases with the greatest

temporal difference in CTP or HI indicate a greater variation

in moisture profiles than temperature profiles with time at the

levels in which CTP and HI are measured. This is important

because it suggests that while CTP and HI are measured in

portions of the atmosphere decoupled from the surface, the

atmosphere continues to evolve. However, we recognize that

the variation in moisture may also be unique to the Southern

Great Plains location and future work could address this by

performing similar studies using AERI observations outside of

this region.

In general, as the difference in time from T12 increases, so

do the differences in CTP and HI, and this is particularly true

for T08 versus T12 observations. Even the most extreme dif-

ferences, in the tails of the difference distributions, were more

pronounced for T08. The composite profiles were obtained for

extreme values in the difference distributions and these ex-

treme cases were often associated with frontal passages, low-

level jets, and other large-scale phenomena (not shown). The

large differences that arose over time as a result of these me-

teorological influences suggest that computations of CTP and

HI obtained from satellite remote sensing platforms near T08

may not always be a good approximation for atmospheric

preconditioning. While median temporal differences in CTP

and HI were often small, even small differences in values can

produce different classifications based on the original frame-

work. Where T08 may diagnose the atmospheric precondition-

ing to be most favorable for convection over dry soils, T12 on

the same day might diagnose the atmosphere as more favor-

able for convection over wet soils. Therefore, on a specific day,

greater uncertainty in the diagnosis of atmospheric pre-

conditioning may exist with vertical profiles obtained farther

in time from the 1200 UTC observation window. T11 and

T13 showed greater skill at producing the same precondition-

ing classification as T12, while T08 performed noticeably

worse. Uncertainty estimates enhanced skill for all three times

considered, suggesting that a reasonable estimate of atmo-

spheric preconditioning can be obtained at times other than

T12. Even so, when considering the categories that correspond

to nonatmospherically controlled days, T08 displayed more

off-diagonal elements for WA and T days despite incorporat-

ing a window of uncertainty. This likely reflects an actual dif-

ference in the atmospheric preconditioning between the two

times, especially when T11 and T13 correctly identified such

days at least half of the time when uncertainty windows were

considered.

Even if CTP and HI observations at T08, T11, T12, and T13

were consistent with one another, synoptic-scale processes

could alter the environment at any time between the morning

sounding and afternoon period for which the CTP-HI frame-

work diagnoses convective preconditioning. For example, if

wet soils were observed and application of the framework di-

agnosed the morning atmosphere as being preconditioned for

convection over wet soils on a day with an afternoon frontal

passage, it would be difficult to forecast the relative contribu-

tion of the land surface from the contribution of large-scale

drivers toward triggering convective precipitation using this

metric alone. Thus, a primary limitation of our analysis is that

we did not filter our data for synoptically quiescent days only as

this would have adversely impacted our sample size, but it is

FIG. 10. As in Figs. 9a–c, but comparing classifications at T12 with those within windows of uncertainty for (a) T08, (b) T11, and (c) T13.
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expected that doing so would result in even greater temporal

agreement in CTP and HI values and greater predictive

utility from those values. The thresholds provided by Findell

and Eltahir (2003a,b) are meant to serve as guidelines and

may be flexible based upon regional climatology (Wakefield

et al. 2019).

5. Conclusions

The implications of this CTP-HI analysis are twofold. First,

by showing good agreement between radiosonde and AERI

observations of CTP and HI, we were able to evaluate the

temporal variability in this coupling metric with confidence

that the AERI retrievals are representative of reality. Second,

we demonstrated some temporal variability in this metric

within a given day, and applications of the framework are best

suited to locations where the morning sounding corresponds

to a local time within 1–2 h of the morning sounding time in the

central time zone.

Days in which HI and CTP differed greatly are not likely to

be the most favorable days for land–atmosphere interactions

studies as large-scale meteorological influences contributed

to substantial temporal evolution in temperature and mois-

ture profiles. As such, synoptic influences on moisture and

temperature would likely overpower the influence of the land

surface. However, it is possible that looking at the temporal

evolution of CTP and HI over a location could provide a

means of identifying days that are favorable for land–

atmosphere coupling and those that are not. Days in which

CTP and HI exceed a certain difference threshold over time

would be considered unfavorable for land–atmosphere in-

teraction studies. This could be automated for identification

of such days within a large dataset. Such an approach is be-

yond the scope of the current study, but future work could

evaluate whether there is a variability threshold for days that

are considered to be optimal for land–atmosphere coupling

study versus days that are not.

Vertical profiles of temperature and moisture are often

incorporated into land–atmosphere coupling metrics, which

can limit their applicability from an observational perspective

as the temporal and spatial coverage of atmospheric profiles

is sparse. The AERI can be used in such locations to better

observe land–atmosphere coupling, and these observations

may also be used to verify model representation of land–

atmosphere coupling in locations where such comparisons

were not previously possible.
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